FORMAZIONE

CULTURA

Home FORMAZIONEECONOMIAMicroeconomiaDuopolio Profitto di Cournot. Calcolo. Prof Carlini

Profitto di Cournot. Calcolo. Prof Carlini

by Giovanni Carlini
0 commenti

Profitto di Cournot quale prosecuzione e sviluppo della serie di studi che qui si stanno pubblicando sull’oligopolio in questo sito Web.

Dopo aver calcolo le due curve di reazione e il connesso punto d’incrocio per coordinate cartesiane, mancano due passaggi:

a) calcolo del profitto di Cournot;

b) la verifica se sia vero o falso che la produzione realizzata nell’equilibrio di Cournot massimizzi il profitto totale di mercato.

Relativamente al primo passaggio vanno considerati i seguenti ragionamenti.

CALCOLO DEL PROFITTO DI COURNOT

Si rammenta il precedente studio a questo, pubblicato ieri, sulla differenza tra ricavo totale (RT) e profitto (indicato con Pi greco che sottrae i costi sostenuti nel processo di produzione).

Nel calcolo del profitto di Cournot, dobbiamo rammentare che ci sono due imprese IDENTICHE che operano sul mercato e in concorrenza aperta.

Ne consegue che applicando gli stessi dati già precedentemente usati, il profitto dell’impresa A è identico a quello conseguito da B

Pi grecoA = Pi grecoB

Da ricordare la funzione di domanda inversa in apertura di questo esercizio tale che p = 100 – Q

Quindi ora che abbiamo le coordinate delle curve di reazione, la funzione di domanda inversa diventa: p = 100 – (30 + 30)

E’ agevole pervenire al p = 40.

Applicando il calcolo del profitto abbiamo 40 * 30 – 100 – 10 * 30 = 800

L’asterisco sta per moltiplicato e il profitto di A è di 800 come quello di B.

E’ VERO O FALSO CHE LA PRODUZIONE IN EQUILIBRIO DI COURNOT MASSIMIZZA IL PROFITTO TOTALE DEL MERCATO?

Sappiamo che il profitto totale dell’interno mercato (nelle condizioni prescritte da Cournot) è pari a 800 + 800 = 1.600

Se avessimo un monopolista come agirebbe?

Il profitto di M (monopolio) è Pi greco M = P * Q – 100 – 10Q

Sappiamo che il prezzo è = 100 – Q

Sostituendo p nella funzione di profitto di M abbiamo (100-Q)Q- 100- 10Q

Sviluppando: 90Q – Q al quadrato – 100

Derivando il profitto M (per ottenere la massimizzazione) sulla Q si pone a zero quindi 90 – 2Q = 0 da cui Q = 45

Con la Q pari a 45 il p diventa 55

Quindi 55 * 45 – 100 – 10*45 è pari a 1.925

La risposta al quesito è che Cournot NON massimizza il profitto totale del mercato. 

Potrebbe piacerti anche